EITI

FXU

Framework for eXecutable UML

Marian Szczykulski under the supervision of Anna Derezinska
2009-06-24

This document describes a process of creating an executable application using the FXU framework.

1. About FXU

FXU is a framework used for creating applicationcaading to MDE (Model-driven
Engineering) methodology. FXU performs transforimasi from UML class and state
machine diagrams into a C# implementation. FXU amposed ofFXU Code Generator

(FXU Generator), Application Wizard andRuntime Environment.

FXU was initially written by Romuald Pilitowski as part of his master’'s thesis:
“Generation of C# code from UML 2.0 class and state machine diagrams’ in 2006. It was
designed to collaborate with UML 2.0 models. Morovit was not equipped with any
graphical interface to create an executable agmitalheFXU Generator worked with EMF
2.1 (Eclipse Modeling Framework) and read an umoi2neit of Eclipse in which the UML

model was serialized.

In 2009 it was redeveloped by Marian Szczykulsksatisfy the UML 2.1 specification. The
FXU Generator was modified in order to work with EMF 2.4.1 (Ed& Modeling
Framework). Furthermore, tHeXU Generator was equipped with a graphical user interface
written in Java-Swing technology and theé\pplication Wizard to improve a process of
building an executable application and creatifdierosoft Visual Sudio 2008 project.

FXU:

* The FXU Code Generator (Fxu.jar) — It is a tool to make a transformation from UML
class and state machine diagrams, serialized iruthleformat of Eclipse, into the C#

implementation.

» TheApplication Wizard — It is a tool integrated with tHeXU Code Generator. It is useful
to create theMicrosoft Visual Sudio 2008 project and amain function, where state

machines can be initialized and started.

* The Runtime Environment (FXU.dIl) — It is an implementation of UML State Machines

written in the C# language.

2. User documentation

This section describes how to use FXU to efficiediévelop applications according to MDE
methodology. The whole process can be describézhirsteps:

2.1 Creating UML model

A preferred tool to create the UML modellBM Rational Software Architect 7.5, but it can
be any other tool, which is able to export a modt the UML 2.1 format of Eclipseuml
extension). In this section the process of creatioen UML model usinglBM Rational
Software Architect 7.5 is described.

First, create the UML model containing a class diag (Figure 1) and state machine

diagrams (Figure 2).

£ CompositeStateTest | ChoicePseudostateTest
Eg ¥ Integer

§2 goTaSimple () _
&2 endStateMachine () g makeAChoice ()

| TriggerActionTest

5 ¥ Integer
£y : Integer

5 Mave ()

Figure 1. Simple example of class diagram.

[_* CompuositeStateTestStateMachine

Start

goTodomposte

= Composite

StartComposite

goTolnterrd

=2 Internal

goToSimple
‘@ ooTosimple () &0 SimpleState
goToEndFromsimple
‘g endStateMachine)
End
goToE
"% endStateMaching ()

Figure 2. Simple example of state machine diagram.

Next, export the model to the UML 2.1 format. Cli€kile’->" Export” and an Export
Window is opened. Then choos®ther™->" UML 2.1 Modéd” and click “Next* button (Figure

3).

k) Export

BX]

Select

Select an export destination:

kvpe filker kext

Export existing model{s) to UML 2.1 {,uml) Format.

+ = Team A
== Other

#| Ecore Model

#] UML 2.1 Madel

[¥L UML 2.1 ¥MI Interchange Model ™

=]

Cancel

Figure 3. Export Window in IBM Rational Software Ar chitect 7.5

On the next window specify the UML model to exportSource section and a destination

path inDestination section (Figure 4).

FO Export @]W

urL rModel

Select the model files to export.

Source

Destination

) workspace:

(%) Direckary: i
Recreate IDs

[1Export applied profiles

Figure 4. Export window in IBM Rational Software Architect 7.5 - choosing source and destination.

Now the UML2.1 model file is created in the spemifipath. It will be used in next steps to

generate a C# code.

2.2 Launching the FXU Generator

First, start FXU by double-clicking dfxu.jar file. The main window of th&XU Generator

is displayed (Figure 5). It is composed of treegianThe left panel is designed to hold a list

of loaded UML models. The right panel is designedhald trees which are visualizations of

UML models. The bottom panel holds a text area,revh@gs about generation and validation

results are displayed. There is also a menu baadad| strap, which are designed to manage

a process of code generation. They are describmcbain next sections.

(= FXU (Frameork for cXecutable UNL) Ex)

File Model Yiew Help

sle]v| e

Figure 5. The main window of FXU Generator.

2.3 Loading UML model to FXU

Click “File’->" Open” and select an UML2.1 model file. It may take feaconds to load the
UML model. Model is displayed as tree containinignaldes specified in the UML 2.1 model
file (Figure 6).

[E FXU (Framework for eXecutable UML) (=)<
File Model Yiew Help

Blank Busin J C:\Documents and Settings'ThinkPad Moje dokumenty'Stu...

. Model: Blank Business Fackage
¢ ' Class: CompositeStateTest
T . State Machine: CompositeStateTestStateachine

¢ ' Fegion: CompositeStateTestMainRegion
T . Fzeudostate: InitialPseudostate
¢ ' Ctgoing transitions
@ Transition to Composite |[Events:
Incoming transitions

File name: ChDocuments and SettingstThinkPadiboje dokumentdStudiaiin? TestFXLNSimpleTes
Getting elements to generate
Model has been read

4| Il | [»

Figure 6. FXU Generator - the UML model is loaded.

Now, the model has been read and is ready forat#hid and code generation.

2.4 Validating the UML Model

This is an optional step, because the model isgbeatidated always before code generation.
Click “Model”->" Validate Model”. FXU will display appropriate information messagleout

validation result.

2.4 Generating C# Code

Click “Mode"->" Generate C# Code’. The Generation Window will be displayed (Figure 7).

e Generating C# Code for C:\Documents and Settings\T... [Z]@
Logdnet configuration |/ Algorithm configuration |

General r Data types |
Specify all general FXU properties for generating code to C#
Input file
Output directory | C-iFx | Browse

[| Owerwrite all existing files

[| Generate debug version of state machines

Generate Cancel

Figure 7. The Generation Wndow of FXU Generator.

The Generation Window is composed of four tabs. They are designed tdigime FXU

Generator and generated elements. They are briefly descabeue.

The “General” tab (Figure 7) is composed of following elements:

* The “Input file” text field — it cannot be changed and it holds thath to the UML

model file.

* The "Output directory” text field — directory where the generated C# eadll be
placed.

* The "Overwrite all existing files’ check box — select to overwrite all existing $len
the output directory.

* The “Generate debug version of FXU Environment” check box — select to generate
application with theFXU Runtime Environment, which enable tracing of a state

machines execution.

The "Data types’ tab (Figure 8) contains information about defaddtta types used in the

generated C# code:

» Default single attribute type — possible valueg; double, object, string, decimal,
bool, char, byte, sbyte, short, long, ulong, single, float and User type, which is
specified on the text field.

* Default collection type - possible valuesSystem.Collections.Generic.List,
System.Collections.Generic.LinkedList, System.Collections.Generic.SortedList,
System.Collections.Generic.Queue, System.Collections.Generic.Stack and User type,
which is specified on the text field.

» Default return type — possible valuesid, int, double, object, string, decimal, booal,
char, byte, sbyte, short, long, ulong, single, float andUser type, which is specified on
the text field.

» Default ordered collection type — possible valuBgstem.Collections.Generic.List,
System.Collections.Generic.LinkedList, System.Collections.Generic.SortedList,
System.Collections.Generic.Queue, System.Collections.Generic.Stack and User type,
which is specified on the text field.

* Default unigque collection type — possible valu&gstem.Collections.Generic.List,
System.Collections.Generic.LinkedList, System.Collections.Generic.SortedList,
System.Collections.Generic.Queue, System.Collections.Generic.Sack and User type,
which is specified on the text field.

£ Generating C# Code for C:\Documents and Settings\ThinkPadWoje dokumer. g@

General Data types rLug4net configuration |/ Algorithm configuration |

Specify default data types

Default single attribute type itt = User Type
Default collection type System.Collections.Generic.List w |User Type
Default return type woid = User Type
Default ordered collection type |gyctem,.Collections.Generic.List w |User Type
Default unigue collection type System.Collections.Generic.List - |User Type

Generate Cancel

Figure 8. The Generation Window of FXU Generator -Data types tab.

The “Log4net configuration” tab (Figure 9) is responsible for a configuratioha log4net
library. The log4net library logs all events duritite execution of state machines in the
generated application. It is composed of followadgments:

The “Add Logging in Console” check box — specify if logs should be visible an

console after launching the generated application.

* The “Set Filter” button in “Console Logger” section — set a filter configuration of the
console logger.

* The “Add logging in file” check box — specify if logs should be placed filea

* The "Directory” text field — specify the directory where the Iblg is created.

* The *File name” text field — specify the log file name.

* The “Set Filter” in ‘File Logger” section — set a filter configuration of the flegger.

» The "Header of logging file” text field — specify the header of the log file.

* The “Footer of logging file” text field — specify the footer of the log file.

* The “Log date’ check box — specify if date should be loggedha liog file.

* The “Log message level” check box — specify if log level should be loggedhe log
file.

* The “Logger name’ check box — specify if the logger name shouldldigged in the
log file.

* The “Log message value” check box — specify if logging messages shoultblgged in

the log file.

The “Log thread id” check box — specify if a thread identifier shoblel logged in the
log file.

Note, that this data types are used only if theyrat specified in the UML model created at
first step.

e Generating C# Code for C:\Documents and Settings\ThinkP... g@
f General |/ Data types |/ Logdnet configuration |/ Algorithm configuration |

Console Logger:
[]Add Logging in Console

Set Filter

File Logger:
[] Add Logging in File

Directory |C:1Ducuments and SettingsThinkPadiPl| Browse
File hame |F}<U_I|:|g.b<t |
Set Filter
Header of the logging file | BEEGIN OF THE LOGEIMG
Footer of the logging file |ErD OF THE LOGGING
Log date [| Log logger name Log thread id

Log message level Log message value

Generate Cancel

Figure 9. The Generation Window of FXU Generator -The Log4net configuration tab.

The “Algorithm configuration” tab (Figure 10) is gonsible for a configuration of a

generation schema in tfke&XU Generator. It is composed of following elements:

The “Add default initial state in orthogonal regions if possible and necessary” check

box — specify if theFXU Generator is supposed to correct an orthogonal state if any
region of this state does not contain an initiatest

5] Generating C# Code for C:\Documents and SettingskThinkP... E]@
r General |/ Data types |/ Logdnet configuration |/ Algorithm configuration

[| Add default initial state in orthogonal regions if possible and necessary.

Generate Cancel

Figure 10. The Generation Window of FXU Generator -The Algorithm Configuration tab.

Click a “Generate” button in order to start the generation procédsere are created two
subdirectories in the output directory:
* lib- it contains:
FXU.dII
FXU.dIl.manifest
log4net.dll
log4net.dll.xml

o O o O

* src - it contains namespace directories, wherell€¢ dre located. For the UML model
on Figure 1 and Figure 2 tisec directory contains:
o Blank Business Package
» ChoicePseudostateTest.cs
= CompositeStateTest.cs
= TriggerActionTest.cs

2.4 Generating the Microsoft Visual Studio 2008 project

After the C# code generation completion a questioout starting thépplication Wizard is
displayed (Figure 11).

-,

C# Code Generated

- Code sucessfully generated!
Would You like to open application Wizard

Yes Ho

Figure 11. The Question Window of the Application Wzard.

The Application Wizard creates theMicrosoft Visual Sudio 2008 project in the output
directory. At first step of the project creationdiie 12):
» Specify the project name. A default value is re&akfrom the UML model.
» Select classes that the project contains. By dieédiutlasses from the UML model are
included.
Note, that the FXU.dII library and the log4net.liirary are mandatory and they cannot be

removed from the project.

Application Wizard for FXU g@

Yisual Studio project name: |EIank_EIu5iness_Package |

Blank_Business_Package.CompositeStateTest Include libraries to project
Blank_Business_Package.ChoicePseudostateTest
Blank_Business_Package.TriggerActionTest

Hext Finish

Figure 12. The Application Wizard - the first window.

At second step select if tiMain function is to be generated (Figure 13). If yes:

» Specify a name of a class containing Man function — the class is created by the

Application Wizard.

» Specify a name space of the class containindyidiea function.

Application Wizard for FXU - Main Function g@
[| Generate Main Function
ain function name: Test
ain function hamespace: Test
Next Finish

Figure 13. The Application Wizard - the second window.

At third step, specify state machines, which wél initialized and started. Select appropriate
class containing a state machine and cliskd’ (Init)” button. Then select appropriate class

containing a state machine and cliékdd (Sart)” button (Figure 14).

It is possible to specify an order of the initialion and starting state machines. Note, that
starting state machine must be placed after thi@limation this state machine.

-,

Application Wizard for FXU - State Machines g@

Add State Machines, you want to initialize and start

Blank_Business_Package.CompositeState’
Blank_Business_Package.ChoicePseudost
Blank_Business_Package.TriggerActionTe!
4 | Il | IC

Add (Init) Add (Start) Remowve Up Down

Generate Cancel

Figure 14. The Application Wizard - the third tab.

Click “Generate” button. The project is created and ready to oped run in theMicrosoft
Visual Sudio 2008. TheApplication Wizard creates:
* Microsoft Visual Studio files:
o Blank_Business_Package.csproj - project file
o Blank _Business_Package.sIn - solution file

* Optionally, C# files with théain function and namespace directories

