
ECOTE - preliminary project

Semester: 18L

Author: Assam Chaudhary

Subject: Write a program reading C++ code and constructing class inheritance tree

General overview and assumptions

When creating a class, instead of writing completely new data members and member
functions, the programmer can designate that the new class should inherit the members of
an existing class. This existing class is called the base class, and the new class is referred to
as the derived class.

When deriving a class from a base class, the base class may be inherited through public,
protected or private inheritance. A C++ class can also inherit members from more than
one class, this is called multiple inheritance.

The program will accept text fles containing C++ source code. Goal of the project is to
identify all class declarations and construct an inheritance tree for classes. I assume
that the input code may not be syntactically correct in terms of class declarations.

Class declarations in C++ could be in the following ways:

Simple class declaration
class Base {
….
} ;

Inherited class
class Derived: Base{
...
};

Multiple inheritance
class Derived_2: public Base, public Derived {
...
};

Nested classes and diferent scopes
class A{
…

class B{ //local class B
...
};

};

class B { //global class B
…
};

Forward declaration
class A;
…
class A{
…
};

Functional requirements

The program should perform a lexical analysis on the input C++ source code, splitting the
code line by line into tokens and classifying keywords and symbols. After analysing that
the code is syntactically correct, amongst these classifed tokens, the program should be
able to identify class declarations and keep track of base and derived classes.
The program should also ignore class declarations in comments (both line and block) as
well as any mention of the keyword class in a string.
The output would be names of each class with the line number declared on and it’s parent
classes also with line number declared on.
The program should also take care of class scope, where more than one classes with the
same name can exist in diferent scopes (local or global).

Detailed syntax of the input language

class-name
 identifier

enum-name
 identifier

typedef-name
 identifier

Expressions

expression
 assignment-expression
 expression , assignment-expression

assignment-expression
 conditional-expression
 unary-expression assignment-operator assignment-expression

assignment-operator
 =
 *=

 /=
 %=
 +=
 -=
 <<=
 >>=
 &=
 ^=
 |=

conditional-expression
 logical-OR-expression
 logical-OR-expression ? expression : conditional-expression

logical-OR-expression
 logical-AND-expression
 logical-OR-expression || logical-AND-expression

logical-AND-expression
 inclusive-OR-expression
 logical-AND-expression && inclusive-OR-expression

inclusive-OR-expression
 exclusive-OR-expression
 inclusive-OR-expression | exclusive-OR-expression

exclusive-OR-expression
 AND-expression
 exclusive-OR-expression ^ AND-expression

AND-expression
 equality-expression
 AND-expression & equality-expression

equality-expression
 relational-expression
 equality-expression == relational-expression
 equality-expression != relational-expression

relationa1-expression
 shift-expression
 relational-expression < shift-expression
 relational-expression > shift-expression
 relational-expression <= shift-expression
 relational-expression >= shift-expression

shift-expression
 additive-expression
 shift-expression << additive-expression
 shift-expression >> additive-expression

additive-expression
 multiplicative-expression

 additive-expression + multiplicative-expression
 additive-expression - multiplicative-expression

multiplicative-expression
 pm-expression
 multiplicative-expression * pm-expression
 multiplicative-expression / pm-expression
 multiplicative-expression % pm-expression

pm-expression
 cast-expression
 pm-expression .* cast-expression
 pm-expression ->* cast-expression

cast-expression
 unary-expression
 (type-name) cast-expression

unary-expression
 posfix-expression
 ++ unary-expression
 -- unary-expression
 unary-operator cast-expression
 sizeof unary-expression
 sizeof (type-name)
 allocation-expression
 deallocation-expression

unary-operator
 *
 &
 +
 -
 !
 ~

allocation-expression
 :: new placement new-type-name new-initializer
 new placement new-type-name new-initializer
 :: new new-type-name new-initializer
 new new-type-name new-initializer
 :: new placement new-type-name
 new placement new-type-name
 :: new new-type-name
 new new-type-name
 :: new placement (type-name) new-initializer
 new placement (type-name) new-initializer
 :: new (type-name) new-initializer
 new (type-name) new-initializer
 :: new placement (type-name)
 new placement (type-name)
 :: new (type-name)
 new (type-name)

placement
 (expression-list)

new-type-name
 type-specifier-list new-declarator
 type-specifier-list

new-declarator
 * cv-qualifier-list new-declarator
 * new-declarator
 * cv-qualifier-list
 *
 complete-class-name :: * cv-qualifier-list new-declarator
 complete-class-name :: * new-declarator
 complete-class-name :: * cv-qualifier-list
 complete-class-name :: *
 new-declarator [expression]
 [expression]

new-initializer
 (initializer-list)
 ()

deallocation-expression
 :: delete cast-expression
 delete cast-expression
 :: delete [] cast-expression
 delete [] cast-expression

postfix-expression
 primary-expression
 postfix-expression [expression]
 postfix-expression (expression-list)
 postfix-expression ()
 simple-type-name (expression-list)
 simple-type-name ()
 postfix-expression . name
 postfix-expression -> name
 postfix-expression ++
 postfix-expression --

expression-list
 assignment-expression
 expression-list , assignment-expression

primary-expression
 literal
 this
 :: identifier
 :: operator-function-name
 :: qualified-name
 (expression)

 name

name
 identifier
 operator-function-name
 conversion-function-name
 ~ class-name
 qualified-name

qualified-name
 qualified-class-name :: name

literal
 integer-constant
 character-constant
 floating-constant
 string-literal

Declarations

declaration
 decl-specifiers declarator-list ;
 decl-specifiers ;
 declarator-list ;
 function-definition
 template-declaration
 linkage-specification

decl-specifier
 storage-class-specifier
 type-specifier
 fct-specifier
 friend
 typedef

decl-specifiers
 decl-specifiers decl-specifier
 decl-specifier

storage-class-specifier
 auto
 register
 static
 extern

fct-specifier
 inline
 virtual

type-specifier
 simple-type-name
 class-specifier
 enum-specifier

 elaborated-type-specifier
 const
 volatile

simple-type-name
 complete-class-name
 qualified-type-name
 char
 short
 int
 long
 signed
 unsigned
 float
 double
 void

elaborated-type-specifier
 class-key identifier
 class-key class-name
 enum enum-name

class-key
 class
 struct
 union

qualified-type-name
 typedef-name
 class-name :: qualified-type-name

complete-class-name
 qualified-class-name
 :: qualified-class-name

qualified-class-name
 class-name
 class-name :: qualified-class-name

enum-specifier
 enum identifier { enum-list }
 enum { enum-list }
 enum identifier { }
 enum { }

enum-list
 enumerator
 enum-list , enumerator

enumerator
 identifier
 identifier = constant-expression

constant-expression
 conditional-expression

linkage-specification
 extern string-literal { declaration-list }
 extern string-literal { }
 extern string-literal declaration

declaration-list
 declaration
 declaration-list declaration

Declarators

declarator-list
 init-declarator
 declarator-list , init-declarator

init-declarator
 declarator initializer
 declarator

declarator
 dname
 ptr-operator declarator
 declarator (argument-declaration-list) cv-qualifier-list
 declarator (argument-declaration-list)
 declarator [constant-expressio]
 declarator []
 (declarator)

ptr-operator
 * cv-qualifier-list
 *
 & cv-qualifier-list
 &
 complete-class-name :: * cv-qualifier-list
 complete-class-name :: *

cv-qualifier-list
 cv-qualifier cv-qualifier-list
 cv-qualifier

cv-qualifier
 const
 volatile

dname
 name
 class-name
 ~ class-name
 typedef-name

 qualified-type-name

type-name
 type-specifier-list abstract-declarator
 type-specifier-list

type-specifier-list
 type-specifier type-specifier-list
 type-specifier

abstract-declarator
 ptr-operator abstract-declarator
 ptr-operator
 abstract-declarator (argument-declaration-list) cv-qualifier-list
 (argument-declaration-list) cv-qualifier-list
 abstract-declarator (argument-declaration-list)
 (argument-declaration-list)
 abstract-declarator [constant-expression]
 [constant-expression]
 abstract-declarator []
 []
 (abstract-declarator)

argument-declaration-list
 arg-declaration-list ...
 ...

 arg-declaration-list , ...

arg-declaration-list
 argument-declaration
 arg-declaration-list , argument-declaration

argument-declaration
 decl-specifiers declarator
 decl-specifiers declarator = expression
 decl-specifiers abstract-declarator
 decl-specifiers
 decl-specifiers abstract-declarator = expression
 decl-specifiers = expression

function-definition
 decl-specifiers declarator ctor-initializer fct-body
 declarator ctor-initializer fct-body
 decl-specifiers declarator fct-body
 declarator fct-body

fct-body
 compound-statement

initializer
 = assignment-expression
 = { initializer-list }

 = { initializer-list , }
 (expression-list)

initializer-list
 assignment-expression
 initializer-list , assignment-expression
 { initializer-list }
 { initializer-list , }

r.17.5 Class Declarations

class-specifier
 class-head { member-list }
 class-head { }

class-head
 class-key identifier base-spec
 class-key base-spec
 class-key identifier
 class-key
 class-key class-name base-spec
 class-key class-name

member-list
 member-declaration member-list
 member-declaration
 access-specifier : member-list
 access-specifier :

member-declaration
 decl-specifiers member-declarator-list ;
 member-declarator-list ;
 decl-specifiers ;
 ;
 function-definition ;
 function-definition
 qualified-name ;

member-declarator-list
 member-declarator
 member-declarator-list , member-declarator

member-declarator
 declarator pure-specifier
 declarator
 identifier : constant-expression
 : constant-expression

pure-specifier
 = integer-constant

base-spec
 : base-list

base-list
 base-specifier
 base-list , base-specifier

base-specifier
 complete-class-name
 virtual access-specifier complete-class-name
 virtual complete-class-name
 access-specifier virtual complete-class-name
 access-specifier complete-class-name

access-specifier
 private
 protected
 public

conversion-function-name
 operator conversion-type-name

conversion-type-name
 type-specifier-list ptr-operator
 type-specifier-list

ctor-initializer
 : mem-initializer-list

mem-initializer-list
 mem-initializer
 mem-initializer , mem-initializer-list

mem-initializer
 complete-class-name (expression-list)
 complete-class-name ()
 identifier (expression-list)
 identifier ()

operator-function-name
 operator operator-name

operator-name
 new
 delete
 +
 -
 *
 /
 %
 ^
 &
 |
 ~
 !

 =
 <
 >
 +=
 -=
 *=
 /=
 %=
 ^=
 &=
 ~=
 <<
 >>
 >>=
 <<=
 ==
 !=
 <=
 >=
 &&
 ||
 ++
 --
 ,
 ->*
 ->
 ()
 []

Statements

statement
 labeled-statement
 expression-statement
 compound-statement
 selection-statement
 iteration-statement
 jump-statement
 declaration-statement
 try-block

labeled-statement
 identifier : statement
 case constant-expression : statement
 default : statement

expression-statement
 expression ;
 ;

compound-statement
 { statement-list }
 { }

statement-list
 statement
 statement-list statement

selection-statement
 if (expression) statement
 if (expression) statement else statement
 switch (expression) statement

iteration-statement
 while (expression) statement
 do statement while (expression) ;
 for (for-init-statement expression ; expression) statement
 for (for-init-statement ; expression) statement
 for (for-init-statement expression ;) statement
 for (for-init-statement ;) statement

for-init-statement
 expression-statement
 declaration-statement

jump-statement
 break ;
 continue ;
 return expression ;
 return ;
 goto identifier ;

declaration-statement
 declaration

Templates

template-declaration
 template < template-argument-list > declaration

template-argument-list
 template-argument
 template-argument-list , template-argument

template-argument
 type-argument
 argument-declaration

type-argument
 class identifier

template-class-name
 template-name < template-arg-list >

template-arg-list
 template-arg

 template-arg-list , template-arg

template-arg
 expression
 type-name

Exception Handling

try-block
 try compound-statement handler-list

handler-list
 handler handler-list
 handler

handler
 catch (exception-declaration) compound-statement

exception-declaration
 type-specifier-list declarator
 type-specifier-list abstract-declarator
 type-specifier-list
 ...

throw-expression
 throw expression
 throw

exception-specification
 throw (type-list)
 throw ()

type-list
 type-name
 type-list , type-name

Implementation

General architecture
The project is implemented in python 3. The libraries used are re (Regular expressions).
The program reads c++ source fles, fnds classes declared and outputs them.

Data structures
 The data structures used are array (python list and tuples), hash table (python dictionary)
and a custom classInfo class and a set of classInfo objects.

 class classInfo:
 def __init__(self, name, line_no, scope):
 self.name = name

 self.line_no = line_no
 self.parents = set()
 self.objects = set()
 self.children = set()
 self.scope = scope

Module descriptions

Module 1
The first part of the program reads the fle and splits it line by line. Each individual line is
then further split into tokens which are stored in form of a list/array. Hash tables with
diferent operators, keywords etc are defned with their keys being the keywords or
operators and values being their description. It acts as a symbol table.
The tokens are input into a syntax analyzer which checks if the code is syntactically
correct. If there is any syntax error, the code is rejected and the program terminates with
an error message. If the code passes the syntax test, the program moves to the next
module.

Module 2
The second module deals with the comments. This could be both single line or block.
If the program encounters a single line comment it ignores everything starting from the
comment until the end of line . If a start of a block comment is encountered then it looks
for the end of the block comment and ignores everything in between.

Module 3
Now we have the actual source code (without any comments). The third module looks for
the keyword class, all the class declarations in the code. It also deals with the situation
where the word class is written in quotation marks (“....class....”) in case of a value assigned
to some string variable in which case the program ignores it.
Once the class keyword is encountered, it is added into a set of of classInfo objects along
with it line number and the name of it’s parent classes if any and the line numbers of the
parent classes.

Input/output description

The input is various parts of a C++ code. It contains several types class declarations
(mentioned earlier) as well as comments containing “class” keywords. Some of the fles do
not contain this keyword as well as incorrect class declarations which would give an error
as well as fles containing same class names but in diferent scopes as well as in the same
scope which should of course give an error.

The output is a set of classes with their names and line number on which it was declared
and the name of it’s parents if any along with the line number on which the parents were
declared. If there were no classes in the program, it tells the user that no classes were
found. If there was a syntax issue with class declaration, then an error message is
outputted with number of line with a syntax issue.

Functional test cases

1. Input: fnd_classes('sample.cpp')
Output: Running on fle: sample.cpp

class "nested" declared on line 84
parent class(es):
Shape (Line 15)

class "Shape2" declared on line 60
parent class(es):
Shape (Line 15)
Rectangle (Line 41)

class "Rectangle" declared on line 41
parent class(es):
Shape (Line 15)

class "a" declared on line 92
parent class(es):
nested (Line 84)

class "nested" declared on line 69
parent class(es):
Shape2 (Line 60)

class "Shape" declared on line 15

class "base" declared on line 65

class "Rec" declared on line 74
parent class(es):
Shape (Line 15)

class "nested" declared on line 21

class "Rec" declared on line 54
parent class(es):
Rectangle (Line 41)

2. Input: fnd_classes('string.cpp')
Output: Running on fle: string.cpp

 No classes found

3. Input: fnd_classes('comments.cpp')
Output: Running on fle: comments.cpp

 No classes found

4. Input: fnd_classes('nested.cpp')
Output: Running on fle: nested.cpp

class "Shape" declared on line 34

class "Rec" declared on line 7

class "b" declared on line 18

class "nested" declared on line 26
parent class(es):
base (Line 5)

class "nested" declared on line 43
parent class(es):
base (Line 5)

class "c" declared on line 22

class "base" declared on line 5

class "nested" declared on line 11

5. Input: fnd_classes('wrong_keyword.cpp')
Output: Running on fle: wrong_keyword.cpp

 Line: 23 - Class "pub" does not exist

6. Input: fnd_classes('nonexist_class.cpp')
Output: Running on fle: nonexist_class.cpp

Line: 5 - Class "Shape" does not exist

7. Input: fnd_classes('noClassName.cpp')
Output: Running on fle: noClassName.cpp

Line: 6 - Incorrect class declaration

8. Input: fnd_classes(‘noColon.cpp’)
Output: Running on fle: noColon.cpp

Line: 11 - Incorrect class declaration

9. Input: fnd_classes('imbalancedParan.cpp')
Output: Running on fle: imbalancedParan.cpp

Imbalanced parentheses in class declarations

10. Input: fnd_classes('frwd_dec.cpp')
Output: Running on fle: frwd_dec.cpp

class "Object" declared on line 7

class "World" declared on line 5

	ECOTE - preliminary project
	Semester: 18L
	Author: Assam Chaudhary
	Subject: Write a program reading C++ code and constructing class inheritance tree
	General overview and assumptions
	Functional requirements
	Detailed syntax of the input language

	Implementation
	General architecture
	Data structures
	Module descriptions
	Input/output description

	Functional test cases

